CCE RR UNREVISED FULL SYLLABUS

ಕರ್ನಾಟಕ ಶಾಲಾ ಪರೀಕ್ಷೆ ಮತ್ತು ಮೌಲ್ಯ ನಿರ್ಣಯ ಮಂಡಲಿ, ಮಲ್ಲೇಶ್ವರಂ, ಬೆಂಗಳೂರು - 560 003

KARNATAKA SCHOOL EXAMINATION AND ASSESSMENT BOARD, MALLESHWARAM, BENGALURU – 560 003

ಎಸ್.ಎಸ್.ಎಲ್.ಸಿ. ಪರೀಕ್ಷೆ, ಜೂನ್ – 2023

S. S. L. C. EXAMINATION, JUNE - 2023

ಮಾದರಿ ಉತ್ತರಗಳು

MODEL ANSWERS

ದಿನಾಂಕ : 13. 06. 2023]

Date : 13. 06. 2023]

ಸಂಕೇತ ಸಂಖ್ಯೆ : 83-E (Phy)

CODE NO.: 83-E (Phy)

ವಿಷಯ : ವಿಜ್ಞಾನ

Subject : SCIENCE

(ಭೌತ ವಿಜ್ಞಾನ, ರಸಾಯನ ವಿಜ್ಞಾನ ಮತ್ತು ಜೀವ ವಿಜ್ಞಾನ / Physics, Chemistry & Biology)

(ಪುನರಾವರ್ತಿತ ಶಾಲಾ ಅಭ್ಯರ್ಥಿ / Regular Repeater)

(ಭೌತ ವಿಜ್ಞಾನ / Physics)

(ಇಂಗ್ಲಿಷ್ ಮಾಧ್ಯಮ / English Medium)

[ಗರಿಷ್ಠ ಅಂಕಗಳು : 80

[Max. Marks : 80

PART – A (Physics)

Qn. Nos.	Value Points			Total		
I.	Multiple choice questions : $4 \times 1 = 4$					
1.	A de	evice that converts	electric	al energy into	mechanical	
	ener	gy is				
	(A)	Electric generator	(B)	Electric motor		
	(C)	Galvanometer	(D)	Voltmeter.		
	Ans.	:				
	(B)	Electric motor				1

RR-A (MA)-PHY

[Turn over

Qn. Nos.	Value Points	Total			
2.	A mirror forms an erect and enlarged image of an object.				
	Then the type of the mirror and the nature of the image				
	respectively are				
	(A) convex mirror and virtual image				
	(B) concave mirror and real image				
	(C) plane mirror and real image				
	(D) concave mirror and virtual image.				
	Ans. :				
	(D) concave mirror and virtual image	1			
3.	The power plant that generates electricity without using the				
	turbines is				
	(A) Thermal power plant (B) Hydro power plant				
	(C) Solar power plant (D) Nuclear power plant.				
	Ans. :				
	(C) Solar power plant	1			
4.	Imagine, you are holding a straight current carrying				
	conductor as per the right hand thumb rule. If the thumb is				
	upward, then the direction of the field lines of the magnetic				
	field is				
	(A) downward (B) upward				
	(C) anti-clockwise (D) clockwise.				
	Ans.:				
	(C) anti-clockwise	1			
II.	Answer the following questions : $2 \times 1 = 2$				
5.	Draw the symbol diagram of rheostat used in electric circuit.				
	Ans. :				
	OR				
		1			
		1			

83-E (PHY)

Qn. Nos.	Value Points	Total
	★ Air pollution	
	★ Acid rain	
	★ Greenhouse effect	
	★ Pollutes water and land	
	★ Global warming (any suitable answer)	
	(Any <i>two</i>) $\frac{1}{2} + \frac{1}{2}$	2
8.	1000 J of heat is produced each 2 seconds in a 5 Ω resistor. Find the potential difference across the resistor.	
	A wire of given material having length \mathcal{U} and area of cross- section \mathcal{A} has a resistance of \mathcal{A} . Find the resistance of	
	another wire of the same material having length $\frac{l}{2}$ and area	
	of cross-section '2A'.	
	Ans. :	
	Solution : $H = 1000 \text{ J}$	
	$R = 5 \Omega$	
	t = 2 seconds	
	V = ?	
	$H = I^2 R t \qquad \qquad \frac{1}{2}$	
	$\therefore I = \sqrt{\frac{H}{Rt}} \qquad \qquad \frac{1}{2}$	
	$= \sqrt{\frac{1000 J}{5 \Omega \times 2 \mathrm{s}}} = \sqrt{\frac{1000}{10}}$	
	$I = 10 \text{ A}$ $\frac{1}{2}$	
	Potential difference across the resistor	
	V = IR	
	$= 10 \times 5$	
	$V = 50 \text{ V} \qquad \qquad \frac{1}{2}$	2
	OR	

RR-A (MA)-PHY

Qn. Nos.	Value Points	Total
	Solution : For first wire	
	$R_1 = \rho \frac{l}{A} = 4 \Omega \qquad \qquad \frac{1}{2}$	
	Now for second wire	
	$R_2 = \rho \frac{\frac{l}{2}}{2A} \qquad \qquad \frac{1}{2}$	
	$= \frac{1}{4} \cdot \rho \frac{l}{A} \qquad \qquad$	
	$R_2 = \frac{1}{4} \cdot R_1$	
	\therefore The resistance of the another wire is	
	$\frac{1}{\cancel{A}} \cdot \cancel{A} = 1 \Omega$ $\frac{1}{2}$	2
IV.	Answer the following questions : $3 \times 3 = 9$	
9.	What is meant by the 'aperture' of a spherical mirror ?	
	Mention the four uses of a concave mirror.	
	OR	
	a) What is meant by the power of a lens ? Write the formula used to find the power of a lens. What is the SI unit of power of a lens ?	
	 b) If the focal lengths of two lenses A and B are + 0.50 m and - 0.40 m respectively. Mention the types of these lenses in the same order. 	
	Ans. :	
	* The diameter of the reflecting surface of spherical mirror. 1	
	★ Used in torches, search-lights and vehicle head lights to get parallel beam of light $\frac{1}{2}$	
	\star as a shaving mirror $\frac{1}{2}$	
	* by dentists to see large images of the teeth $\frac{1}{2}$	
	$\star \text{ in solar furnaces to concentrate sunlight} \qquad \frac{1}{2}$	3
	OR	

5

RR-A (MA)-PHY

[Turn over

Qn. Nos.	Value Points	Total
a)	\star The degree of convergence or divergence of light rays is	
	the power of a lens $\frac{1}{2}$	
	$\star P = \frac{1}{f} \tag{1}$	
	* SI unit of power of a lens is 'dioptre'. OR 'D' $\frac{1}{2}$	
b)	★ + 0.50 m → Convex lens $\frac{1}{2}$	
	★ $-0.40 \text{ m} \rightarrow \text{Concave lens} \qquad \frac{1}{2}$	3
10.	Observe the given diagram : Coil-1 Coil-2	
	 Ans.: * Take two different coils of copper wire say 100 and 50 turns respectively. Insert them over a non-conducting cylindrical roll. 	
	★ Connect the Coil-1 in series with a battery and plug key, Coil-2 with galvanometer $\frac{1}{2}$	
	* When the key is plugged in, needle of the galvanometer deflects and returns to zero. This indicates the presence of current in the Coil-2 $\frac{1}{2}$	

RR-A (MA)-PHY

CCE	RR	7 83-	E (PHY)
Qn. Nos.		Value Points	Total
	*	Disconnect Coil-1 from battery. Needle of the galvanometer deflects in the opposite direction and	
		returns to zero. This indicates the opposite direction of the current. $\frac{1}{2}$	
	Cor	nclusions :	
	*	Changing electric current in Coil-1 induces current in Coil-2. This is electromagnetic induction. $\frac{1}{2}$	
	*	This is due to the change in the magnetic field. $\frac{1}{2}$	3
11.	Dra lens ray	w the ray diagram for the image formation by a convex s, when the object is placed at $2F_1$. With the help of the diagram mention the position and the nature of the	
	ima	ge formed.	
		$[F_1:$ Principal focus of the lens $]$	
		OR	
	Dra lens	w the ray diagram for the image formation in a convex is when the object is placed beyond $2F_1$. With the help of	
	the	ray diagram mention the position and the nature of the	
	ima	ge formed.	
		$[F_1:$ Principal focus of the lens $]$	
	Ans	5. :	

RR-A (MA)-PHY

Qn. Nos.	Value Points	Total
	b) In which method the resistors R_1 and R_2 could	d be
	connected so that the equivalent resistance of	that
	electric circuit becomes low ? What is the change in	n the
	value of current in the circuit by this type	e of
	connection ?	
	Ans. :	
a)	Solution :	
	The energy consumed by the bread-toaster in 30 days	
	= $350 \text{ W} \times 15 \text{ hours} \times 30 \text{ days}$	$\frac{1}{2}$
	= 157500 Wh	
	= 157.5 kWh	$\frac{1}{2}$
	The energy consumed by the iron box in 30 days	
	= $250 \text{ W} \times 5 \text{ hours} \times 30 \text{ days}$	$\frac{1}{2}$
	= 37500 Wh	
	= 37.5 kWh	$\frac{1}{2}$
	The total cost of energy at the rate of Rs. 4.00 for 1 kWh	n for
	30 days.	
	= $(157.5 + 37.5)$ kWh × 4	$\frac{1}{2}$
	= 195 × 4	
	= Rs. 780	$\frac{1}{2}$
	RR-A (MA)-PHY	[Turn over

9

оз-е (I	РПІ)	10	CC	ERR
Qn. Nos.		Value Points		Total
b)	Para	allel connection	$\frac{1}{2}$	
	The	value of the current increases.	$\frac{1}{2}$	4
VI.	Ans	wer the following question : 1×5	= 5	
13.	a)	How does the lens of human eye accommodate to	see	
		the nearby objects and the distant objects ? Explain.		
	b)	Explain the formation of rainbow in the nature.		
	Ans	.:		
a)	*	When the ciliary muscles are relaxed the eye le	ens	
		becomes thin	$\frac{1}{2}$	
	*	This increases its focal length	$\frac{1}{2}$	
	*	and the distant objects can be seen clearly	$\frac{1}{2}$	
	*	When the ciliary muscles contract the eye lens becom	nes	
		thick	$\frac{1}{2}$	
	*	This decreases its focal length	$\frac{1}{2}$	
	*	and the nearby objects can be seen clearly.	$\frac{1}{2}$	
b)	*	The water droplets act like small prisms	$\frac{1}{2}$	
	*	They refract and disperse the incident sunlight	$\frac{1}{2}$	

RR-A (MA)-PHY

CCE RR

83-E (PHY)

Qn. Nos.	Value Points		
	*	Then reflect internally $\frac{1}{2}$	
	*	Finally refract again while coming out of water droplets.	
		Due to the dispersion of light in this manner the	
		rainbow is formed. $\frac{1}{2}$	5

-

RR-A (MA)-PHY

CCE RR UNREVISED FULL SYLLABUS

ಕರ್ನಾಟಕ ಶಾಲಾ ಪರೀಕ್ಷೆ ಮತ್ತು ಮೌಲ್ಯ ನಿರ್ಣಯ ಮಂಡಲಿ, ಮಲ್ಲೇಶ್ವರಂ, ಬೆಂಗಳೂರು - 560 003

KARNATAKA SCHOOL EXAMINATION AND ASSESSMENT BOARD, MALLESHWARAM, BENGALURU – 560 003

ಎಸ್.ಎಸ್.ಎಲ್.ಸಿ. ಪರೀಕ್ಷೆ, ಜೂನ್ – 2023

S. S. L. C. EXAMINATION, JUNE - 2023

ಮಾದರಿ ಉತ್ತರಗಳು

MODEL ANSWERS

ದಿನಾಂಕ : 13. 06. 2023]

ಸಂಕೇತ ಸಂಖ್ಯೆ : 83-E (Chem.)

Date : 13. 06. 2023]

CODE NO. : 83-E (Chem.)

ವಿಷಯ : ವಿಜ್ಞಾನ

Subject : SCIENCE

(ಭೌತ ವಿಜ್ಞಾನ, ರಸಾಯನ ವಿಜ್ಞಾನ ಮತ್ತು ಜೀವ ವಿಜ್ಞಾನ / Physics, Chemistry & Biology)

(ಪುನರಾವರ್ತಿತ ಶಾಲಾ ಅಭ್ಯರ್ಥಿ / Regular Repeater)

(ರಸಾಯನ ವಿಜ್ಞಾನ / Chemistry)

(ಇಂಗ್ಲಿಷ್ ಮಾಧ್ಯಮ / English Medium)

[ಗರಿಷ್ಠ ಅಂಕಗಳು : 80

[Max. Marks: 80

PART – B (Chemistry)

Qn. Nos.		Value Points		Total
VII.	Mul	tiple choice questions :	2 × 1 = 2	
14.	Mer	deleev's periodic table is constructed on the ba	sis of	
	(A)	Atomic number		
	(B)	Electronic configuration of an atom		
	(C)	Atomic size		
	(D)	Atomic mass.		
	Ans	.:		
	(D)	Atomic mass		1
		RR-A (MA)-CHE	[Tu	ırn over

Qn. Nos.	Value Points	Total
15.	Chips manufacturers, flush bags of chips with nitrogen gas	
	because, to	
	(A) prevent corrosion of chips	
	(B) prevent chips from getting oxidised	
	(C) make chips undergo rancidity	
	(D) prevent the chips from getting reduced.	
	Ans. :	
	(B) prevent chips from getting oxidised	1
VIII.	Answer the following questions : $4 \times 1 = 4$	
16.	Name the product produced when calcium oxide reacts with	
	water.	
	Ans. :	
	★ Calcium hydroxide / slaked lime 1	
	OR	
	* Ca (OH) ₂ (Credit $\frac{1}{2}$ mark for molecular formula)	1
17.	Name the ions responsible for acidic and basic natures of	
	the substances.	
	Ans. :	
	* Acidic – H ⁺ / H ₃ O ⁺ / Hydrogen / Hydronium $\frac{1}{2}$	
	* Basic — OH ⁻ Hydroxyl / Hydroxide $\frac{1}{2}$	1
18.	Why are detergents more suitable for cleansing clothes in	
	hard water ?	
	Ans. :	
	Detergents do not form insoluble precipitates with calcium /	
	magnesium ions present in hard water	1

RR-A (MA)-CHE

CCE	RR

83-E (Chem.)

Qn. Nos.	Value Points				
19.	Ionic compounds have high melting point and boiling point. Why ? Ans. :				
	to break the strong inter ionic attraction between molecules.	the	1		
IX.	Answer the following questions : 3×2	2 = 6			
20.	In a homologous series, the first member of hydrocal group has the molecular formula CH_4 . Then find out	rbon t the			
	molecular formula of the fourth member and write two t	ypes			
	of structural formula of it.				
	Ans.:				
	$\begin{array}{c} \star C_1 H_4 \\ C H \end{array} \qquad \qquad C_n H_{2n+2} \end{array}$				
	$\frac{C_{1}H_{2}}{C_{2}H_{6}} \qquad \text{OR} \qquad C_{4}H_{(2\times4)+2}$				
	$\star \frac{C_{1}H_{2}}{C_{3}H_{8}} \qquad \qquad C_{4}H_{(8+2)}$				
	$\star \frac{C_1 H_2}{C_4 H_{10}} \qquad \qquad C_4 H_{10}$	1			
	Butane (C_4H_{10}) structures				
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
	n-butane	$\frac{1}{2}$			
	$\begin{vmatrix} H & H & H \\ I & I & I \\ H - C - C - C - H \\ I & I \\ H - C - H \\ H \\ H - C - H \\ H$	$\frac{1}{2}$	2		
	RR-A (MA)-CHE	ا Tu [rn over		

83-E ((Chem.)
--------	--------	---

Qn. Nos.		Value Points	Total				
21.	What are alloys ? Write the constituent elements present in						
	broi	nze and solder metal.					
	OR						
	Wha	What are ores ? Name the respective methods used to					
	con	vert sulphide and carbonate ores of metals into their					
	oxic	oxides.					
	Ans	Ans. :					
	*	An alloy is a homogenous mixture of two or more					
	*	Bronze — Copper and tin / Cu and Sn $\frac{1}{2}$					
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					
	*	Solder metal — Lead and tin / Pb and Sn $\frac{1}{2}$	2				
		OR					
	*	Minerals contain a very high percentage of a particular					
	metal and the metal can be profitably extracted from						
	it. 1						
	*	Metallic sulphide ore — Roasting $\frac{1}{2}$					
	*	Metallic carbonate ore — Calcination $\frac{1}{2}$	2				
22.	Add	same amount of barium chloride solution to a test tube					
	con	taining 5 ml of sodium sulphate solution. Then					
	i)	Which insoluble white precipitate is formed ?					
	ii)	Name the ions responsible for the formation of white precipitate.					
	iii)	Mention the type of chemical reaction that took place here.					
	Ans	. :					
	i)	BaSO ₄ / barium sulphate $\frac{1}{2}$					
	ii)	SO_4^2 – sulphate radical $\frac{1}{2}$					
		Ba^{2+} — Barium ion $\frac{1}{2}$					
	iii)	Double displacement reaction / precipitation reaction.					
		$\frac{1}{2}$	2				

4

RR-A (MA)-CHE

Qn. Nos.		Value Point	ts				Tot
X.	Answer the following	questions :	:		3 :	× 3 = 9	
23.	Draw the diagram of	arrangement	t of the	e appa	ratus ı	used to	
	show the action of	steam on m	netal.	Label	the fo	llowing	
	parts :						
	i) Metal sample						
	ii) Delivery tube.						
	Ans. :						
	Acti	on of steam	on met	al			
	Metal sample						
		<i>a</i> x	\cap		Î		
	(∰ &	87	<u>-0</u>				
	Г	elivery tube	101				
				200			
					6		
				Diagra	am —	2	
				Parts	_	$\frac{1}{2} + \frac{1}{2}$	3
24.	The elements are arr	anged in the	e incre	asing (order o	of their	
	atomic masses in th	e below giv	en tab	ole. Ob	oserve	it and	
	answer the following o	uestions :					
	Sa Re Ga	Ma Pa	Dha	Ni			
	H Li Be	B C	Ν	0	F	Na	
	i) Name the elemen	ts that belor	ng to th	ne sam	e groui	э.	
	ii) State the law tha	t helps to gro	oup the	ese ele	ments.		
	,	1 1 3	1	X7			
	iii) Write two limitati	ons of the sa	ame lav	/v .			
	iii) Write two limitati Ans. :	ons of the sa	ame lav				
	iii) Write two limitatiAns. :i) H and F	ons of the sa	ame lav			$\frac{1}{2}$	
	 iii) Write two limitati Ans. : i) H and F Li and Na 	ons of the sa	ame lav			$\frac{1}{2}$	

5

Qn. Ios.	Value Points					
	ii)	Newlands' law of octaves.				
		When the elements arranged in the order of increasing				
		atomic masses, every eighth element had properties				
		similar to that of first.				
	iii)	Limitations :				
		\star Applicable only up to calcium				
		\star Wrong guess made such as 'no more elements				
		would be discovered in future'.				
		\star Adjusted two unsimilar elements in the same slot				
		\star With the discovery of noble gases the law of				
		octaves become irrelevant.				
		(Any <i>two</i> points) $\frac{1}{2} + \frac{1}{2}$	3			
25.	a)	Identify unsaturated hydrocarbons in the following				
		carbon compounds and write their structural formula. C_6H_6 , C_5H_{12} , C_2H_5OH , C_2H_2 .				
	b)	Write the difference between esterification and				
		saponification.				
		OR				
	a)	Write electron dot structure of oxygen molecule.				
	b)	Carbon atom does not form C^{4-} anion and C^{4+}				
		cation. Why ?				
	Ans	.:				
a)	Un	saturated hydrocarbons Structural formula $\frac{1}{2} + \frac{1}{2}$				
		$C_{6}H_{6}$ H_{1} H_{2} H_{1} H_{2} H_{1} H_{2} H_{2} H_{1} H_{2}				
		$C_0 H_0$ $H - C \equiv C - H$ $\frac{1}{2} + \frac{1}{2}$				

83-E (Chem.)

105.	Value Points	Total
b)	Esterification : Reaction between an acid and an alcohol to produce esters. $\frac{1}{2}$	
	Saponification : Reaction between an alkaline base and long	
	chain carboxylic acid to produce soaps [or sodium / potassium salts of long chain carboxylic acid] $\frac{1}{2}$	3
	OR	
a)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	O = O 1	
b)	$\star~$ C $^4-$ anion does not form because difficult for the	
	nucleus with six protons to hold on ten electrons. 1	
	\star C ⁴⁺ cation does not form because require large	
	amount of energy to remove four electrons leaving	
	behind a carbon with six proton in its nucleus holding	
	on just two electrons. 1	3
XI.	Answer the following question : $1 \times 4 = 4$	
26.	a) Explain the manufacturing of bleaching powder. Write	
	any two uses of it.	
	b) A strong solution of sodium hydroxide is added to the	
	strong solution of hydrochloric acid. What is the nature	
	of the salt solution formed here ? Write a balanced	
	chemical equation for this reaction.	

RR-A (MA)-CHE

[Turn over

Qn. Nos.		Value Points	Total			
	Ans. :	:				
a)	Bleac	ching powder is produced by the action of chlorine on				
	dry sl	laked lime.				
		OR				
	Ca (0	$OH_{2} + Cl_{2} \rightarrow CaOCl_{2} + H_{2}O \qquad 1$				
	Uses :					
	* I	For bleaching cotton and linen in the textile industry,				
	۲	wood pulp in paper factories.				
	* I	For bleaching washed clothes in laundry				
	* 1	As an oxidising agent in chemical industry				
	★ t	to make drinking water free from germs.				
		(Any <i>two</i>) $\frac{1}{2} + \frac{1}{2}$				
b)	* 1	The salt solution is a neutral solution. 1				
	* I	$NaOH + HC1 \rightarrow NaCl + H_2O.$ 1	4			

RR-A (MA)-CHE

CCE RR UNREVISED FULL SYLLABUS

ಕರ್ನಾಟಕ ಶಾಲಾ ಪರೀಕ್ಷೆ ಮತ್ತು ಮೌಲ್ಯನಿರ್ಣಯ ಮಂಡಲಿ, ಮಲ್ಲೇಶ್ವರಂ, ಬೆಂಗಳೂರು - 560 003

KARNATAKA SCHOOL EXAMINATION AND ASSESSMENT BOARD, MALLESHWARAM, BENGALURU – 560 003

ಎಸ್.ಎಸ್.ಎಲ್.ಸಿ. ಪರೀಕ್ಷೆ, ಜೂನ್ – 2023

S. S. L. C. EXAMINATION, JUNE - 2023

ಮಾದರಿ ಉತ್ತರಗಳು

MODEL ANSWERS

ದಿನಾಂಕ : 13. 06. 2023]

Date : 13. 06. 2023]

ಸಂಕೇತ ಸಂಖ್ಯೆ : 83-E (Bio)

CODE NO. : 83-E (Bio)

ವಿಷಯ : ವಿಜ್ಞಾನ

Subject : SCIENCE

(ಭೌತ ವಿಜ್ಞಾನ, ರಸಾಯನ ವಿಜ್ಞಾನ ಮತ್ತು ಜೀವ ವಿಜ್ಞಾನ / Physics, Chemistry & Biology)

(ಪುನರಾವರ್ತಿತ ಶಾಲಾ ಅಭ್ಯರ್ಥಿ / Regular Repeater)

(ಜೀವ ವಿಜ್ಞಾನ / Biology)

(ಇಂಗ್ಲಿಷ್ ಮಾಧ್ಯಮ / English Medium)

[ಗರಿಷ್ಠ ಅಂಕಗಳು : 80

[Max. Marks: 80

PART – C (Biology)

Qn. Nos.	Value Points						
XII.	Multiple choice questions : $2 \times 1 = 2$						
27.	Proc	lucers of aquatic eco	-system	are			
	(A)	algae	(B)	small fishes			
	(C)	larvae	(D)	protozoa.			
	Ans	.:					
	(A)	algae				1	
			RR-A (M	A)-BIO	[Tư	ırn over	

Qn. Nos.	Value Points	Total
28.	Biological process that has been shown in the diagram is	
	(A) production of progenies by fragmentation method	
	(B) production of progenies by multiple fission method	
	(C) regeneration of tissues by development in specialised cells	
	(D) asexual reproduction by vegetative propagation.	
	Ans. :	
	(C) regeneration of tissues by development in specialised cells	1
XIII.	Answer the following questions : $2 \times 1 = 2$	
29.	What is biological magnification ?	
	Ans. :	
	The process of increasing the storage of harmful chemicals in the organisms that found in trophic levels of various food chains.	1
30.	Mention the two importances of 'Recycling' in controlling	
	environmental pollution.	
	Ans.:	
	 ★ Helps in the segregation of bio-degradable and non-bio degradable materials 	
	★ The materials that can be recycled are not dumped as other waste materials	
	★ Decrease the use of raw materials	
	\star Addition of harmful wastes to other natural resources	
	will be avoided. (Any two) $\frac{1}{2} + \frac{1}{2}$	1

RR-A (MA)-BIO

Qn. Nos.	Value Points	Total
XIV.	Answer the following questions : $3 \times 2 = 6$	
31.	What needs of the local people are fulfilled by the forest ?	
	Ans.:	
	Local people obtain :	
	\star Large quantities of firewood, small timber and grass.	
	\star Bamboo to make slats for huts and baskets for	
	collecting and storing food materials.	
	★ Essential materials to prepare the implements for	
	 Equits puts and medicines 	
	 Fruits, nuts and medicines. Grazing area for their cattle 	
	(Any four) $4 \times \frac{1}{2}$	2
30	Draw the diagram showing the structure of penhron and	
02.	label 'glomerulus'.	
	Ans. :	
	Glomerulus With the second sec	
	Structure of nephron	
	Figure — $1\frac{1}{2}$	
	Part — $\frac{1}{2}$	2
	RR-A (MA)-BIO [Tu	ırn over

83-E ((Bio)
--------	-------

Qn. Nos.	Value Points	Total
33.	Student 'A' tells to Student 'B' that the wing of bird and arm of human are analogous organs. Student 'B' replies both of them are homologous organs. Whose answer is correct ?Justify your answer with suitable reasons.Ans. :Student B's answer is correct. $\frac{1}{2}$ Because, \star they might be evolved from a common ancestor $\frac{1}{2}$ \star the basic structure of wing and arm is similar $\frac{1}{2}$	
XV. 34.	Answer the following questions : $3 \times 3 = 9$ Draw the diagram showing the structure of human brain and label the following parts : i) Mid-brain ii) Pons Ans. : PONS MIDBRAIN	2
35.	$\begin{array}{l} {\rm Diagram-2} \\ {\rm Part} \ - \ \frac{1}{2} + \frac{1}{2} \\ \end{array}$ Round, green colour seeds producing pea plant ($RR \ yy$) are crossed with wrinkled, yellow colour seeds producing pea plant ($rr \ YY$). Show the result of F_2 generation with the	3

RR-A (MA)-BIO

83-E (Bio)

Qn. Nos.			Value Po	ints			Total
	help of a	checker boa	rd and mer	ntion the ra	tio of varieti	ies of	
	plants.						
			OR				
	How are t	he traits of	organisms	classified as	s 'dominant	' and	
	'recessive	' traits ? Th	e experienc	es of an ind	ividual acqu	uired	
	during its	s life-time	cannot be	passed on	to its prog	geny.	
	Why?						
	Ans.: $F_2 RrYy \times RrYy$						
		RY	Ry	rY	ry		
	RY	RRYY	RRYy	RrYY	RrYy		
	Ry	RRYy	RRyy	RrYy	Rryy		
	rY	RrYY	RrYy	rrYY	rrYy		
	ry	RrYy	Rryy	rrYy	rryy	2	
	Round, y	ellow = 9					
	Round, g	reen = 3					
	Wrinkled,	yellow = 3					
	Wrinkled,	green = 1				1	3
			OR				
	* Amor	ng the two o	copies of gen	nes related	for a trait, i	f one	
	of the traits expressed in many generations /						
	offsp	rings, then	that trait is	dominant.		1	
	\star Among paired traits which of the traits not expressed						
	or le	ess express	sed in a	few of the	generation	ns /	
	orgai	nisms, then	that trait is	s recessive.		1	
	★ Char	nge in non-i	reproductiv	e tissues ca	annot be pa	assed	
	on to	o the DNA of	germ cells.			1	3
36.	"Reaching	g to sexual	maturation	is an esse	ntial event	with	
	respect t	to mamma	ls like hu	ımans." Sı	ıbstantiate	this	
	statement	t.					
	Ans.:						

RR-A (MA)-BIO

[Turn over

83-E ((Bio)
--------	-------

Qn. Nos.	Value Points	Total
	Reaching sexual maturation.	
	In males	
	★ Development of testes helps to produce sperm / testosterone	
	★ For reproduction requires development of testes	
	\star To have secondary sexual characters.	
	\star During intercourse erection of penis helps to transfer	
	germ cells into the female body.	
	In females	
	★ To cause menstrual cycle	
	\star For the production and release of ovum	
	\star For the secretion of women related hormones like	
	estrogen	
	\star For the growth of breasts to feed the baby after a child	
	birth.	3
XVI.	Answer the following questions : $2 \times 4 = 8$	
37.	a) As the growth advances in a climbing plant (creeper)	
	that appears as the plant is moving towards a particular direction. How ?	
	b) Explain the necessity of chemical communication in animals.	
	Ans. :	
a)	For a touch / thigmotropism, when the tendrils of creeper	
	plants come in contact with a support, the plant circles	
	around it and grows faster. 1	
	When tendrils gets attached to a support then, tips of the	
	plant synthesise auxin hormone at higher concentration	
	and stimulates the elongation of cells, then the plant shows	
	directional movement / growth towards light. 1	
b)	In animals chemical communication is necessary.	
	\star In animals electrical impulses will reach only the cells	
	that are connected by nervous tissue but not each and	
	every cell. 1	

RR-A (MA)-BIO

Qn. Nos.	Value Points	Total
	★ Nerve cells cannot create and transmit electrical impulses continuously therefore, chemical communication is necessary in transmitting stimulus	
	continuously to each and every cell. 1	4
38.	a) Compare the functions of xylem tissue with that of	
	phloem tissue.	
	b) Explain the process of exchange of gases that take	
	place through stomata in plants.	
	OR	
	a) How is the structure of human heart supportive in	
	transporting oxygenated blood and deoxygenated	
	blood ? Explain.	
	b) In humans, how is the digested food absorbed by the	
	blood ? Mention the function of blood in transporting	
	necessary materials.	
	Ans. :	
a)	Xylem Phloem	
	 Transport water and * Transport food / organic minerals / inorganic materials 	
	* Flow of materials is * Flow of materials is in unidirectional two directions (upward and downward)	
	 ★ Xylem tracheids and vessels transport companion cells materials from root to shoot ★ Sieve tube and companion cells transport materials to all the parts from leaves 	
	 ★ Works by suction ★ Works by osmotic pressure pressure 	
	(Any three) 1 + 1 + 1	

7

RR-A (MA)-BIO

[Turn over

3-E (l	Bio) 8	CC	E RR
Qn. Nos.	Value Points		Total
b)	★ In plants the large intercellular spaces and all th are oftenly in contact with air, due to this CO	te cells D_2 and $\frac{1}{2}$	
	oxygen are exchanged by diffusion here. This mea	ans $\frac{1}{2}$	
	 ★ Gases can go into cells and away from them and into the air / atmosphere. 	nd out $\frac{1}{2}$	4
	OR		
a)	Human heart		
	★ Has different chambers	$\frac{1}{2}$	
	★ The valves present in between the chambers p backward flow of blood	prevent $\frac{1}{2}$	
	★ Separated by dividing wall septum	$\frac{1}{2}$	
	 ★ Septum is responsible for creating separate pat to transport oxygenated and deoxygenerated bloo 	thways d. $\frac{1}{2}$	
b)	Absorbed by finger like projections Villi present in intestine	small $\frac{1}{2}$	
	 ★ Blood plasma — transports food, carbon dioxid nitrogne wastes 	le and $\frac{1}{2}$	
	★ RBC — Carries oxygen	$\frac{1}{2}$	
	 ★ Many other substances like salts are also trans by blood. 	ported $\frac{1}{2}$	4

RR-A (MA)-BIO

=