CCE RF/PF/RR/PR/NSR/NSPR

 FULL SYLLABUS
A

 KARNATAKA SCHOOL EXAMINATION AND ASSESSMENT BOARD, MALLESHWARAM, BENGALURU - 560003

MARCH/APRIL 2024 EXAMINATION - 1

MODEL ANSWERS

むియ్య : గణిత

Subject : MATHEMATICS

 అభ్యథి / ఎనో.ఎసో.ఆరా. / ఎనా.ఎహో.むి.ఆరా.)
(Regular Fresh / Private Fresh / Regular Repeater / Private Repeater / NSR / NSPR)
(ఆంగ్ల ఱూధ్యయు / English Medium)
దననాంళ : 02. 04. 2024]
Date: 02. 04. 2024]

[Max. Marks : 80

Qn. Nos.	Ans. Key	Value Points	Marks allotted
I. $\begin{array}{rr} \\ \\ 1 .\end{array}$	(C)	Multiple choice questions: $8 \times 1=8$ The product of HCF and LCM of two numbers 15 and 20 is (A) 15 (B) 20 (C) 300 (D) 35 Ans. : 300	1

Qn. Nos.	$\begin{aligned} & \text { Ans. } \\ & \text { Key } \end{aligned}$	Value Points	Marks allotted
6.	(C)	The volume of the frustum of a cone whose base radii are r_{1} and r_{2} and height ' h ', is (A) $\frac{1}{3} \pi\left(r_{1}+r_{2}+r_{1} \cdot r_{2}\right) h$ (B) $\frac{1}{3} \pi\left(r_{1}{ }^{2}+r_{2}{ }^{2}-r_{1} \cdot r_{2}\right) h$ (C) $\frac{1}{3} \pi\left(r_{1}{ }^{2}+r_{2}^{2}+r_{1} \cdot r_{2}\right) h$ (D) $\frac{1}{3} \pi\left(r_{1}{ }^{2}-r_{2}{ }^{2}-r_{1} \cdot r_{2}\right) h$ Ans. : $\frac{1}{3} \pi\left(r_{1}^{2}+r_{2}^{2}+r_{1} \cdot r_{2}\right) h$	1
7.		If $2, x, 26$ are in Arithmetic progression, then the value of x is (A) 12 (B) 14 (C) 28 (D) 24 Ans. :	
	(B)	14	1
8.		If $\tan \left(90^{\circ}-\theta\right)=\sqrt{3}$, then the value of $\cot \theta$ is (A) $\frac{1}{\sqrt{3}}$ (B) 1 (C) 0 (D) $\sqrt{3}$	
	(D)	Ans. : $\sqrt{3}$	1

Ans. :
$\frac{\triangle A D E}{\triangle A B C}=\frac{2^{2}}{3^{2}}$
$\frac{\triangle A D E}{\triangle A B C}=\frac{4}{9}$
10. The radius of the base and the height of a cylinder and a cone are same. If the volume of the cylinder is 27 cubic units, then find the volume of cone.

Ans. :
Volume of cone $=\frac{1}{3}$ volume of cylinder
$=\frac{1}{3} \times 2 x$
$=9$ Cubic Units
If $200=2^{m} \times 5^{n}$, then find the values of m and n. Ans. :
$200=2^{m} \times 5^{n}$
$200=2^{3} \times 5^{2}$
$m=3$ and $n=2$

$$
\begin{array}{r|c}
2 & 200 \\
2 & 100 \\
2 & 50 \\
\hline 2 & \frac{25}{5} \\
\hline & 5
\end{array}
$$

Qn. Nos.	Value Points
12.	Find the number of solution
	equations $2 x-3 y+4=0$ and $3 x$
	Ans. :
$2 x-3 y+4=0$	
$3 x+5 y+8=0$	
$\frac{a_{1}}{a_{2}}=\frac{2}{3}$ and $\frac{b_{1}}{b_{2}}=\frac{-3}{5}$ and $\frac{c_{1}}{c_{2}}=\frac{4}{8}$	
$\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$	

\therefore Exactly one or unique solution
In an Arithmetic progression, sum of the first six terms and sum of the first five terms are 78 and 55 respectively. Then find the sixth term of the progression.
Ans. :
$S_{6}=78$
$S_{5}=55$
$a_{n}=S_{n}-S_{n-1}$
$a_{6}=s_{6}-S_{5}=78-55$
$\therefore a_{6}=23$
14. Write the degree of the polynomial
$p(x)=x\left(x^{2}+3\right)+5 x^{2}+7$.
Ans. :
$p(x)=x\left(x^{2}+3\right)+5 x^{2}+7$
$p(x)=x^{3}+3 x+5 x^{2}+7$
\therefore Degree of the polynomial $=3$
15. If the value of discriminant of a quadratic equation is zero, then write the nature of roots of the quadratic equation.
Ans. :
$\therefore \Delta=b^{2}-\Delta a c=0$
Roots are equal and real

Marks allotted

| Qn.
 Nos. | Marks Points
 16. | Find the value of θ in the figure. |
| ---: | :--- | :--- | :--- |

Nos.
Solve the given pair of
method :
$\left.\begin{array}{c}2 x+y=8 \\ 3 x-y=7 \\ \text { Ans. : } \\ \text { Adding } \begin{array}{l}2 x+\not y=8 \\ 3 x-y=7\end{array} \\ \begin{array}{l}5 x=15 \\ x=\frac{15}{5} \\ x=3\end{array}\end{array}\right]$

Substituting the value of $x=3$ in

$$
\begin{aligned}
& 2 x+y=8 \\
& 2(3)+y=8 \\
& y=8-6 \\
& y=2
\end{aligned}
$$

Find the sum of first 20 terms of the Arithmetic progression $1,5,9, \ldots$ using formula.
Ans. :
1, 5, 9 $. S_{20}=?$
$a=1, \quad d=5-1=4, \quad n=20$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$S_{20}=\frac{20}{2}[2 \times 1+(20-1) 4]$
$=10[2+19 \times 4]$
$=10[2+76]$
$=10 \times 78$
$=780 \quad 1 / 2$
Find the roots of the quadratic equation $2 x^{2}-3 x-1=0$ using quadratic formula.
Ans. :
$2 x^{2}-3 x-1=0$
$a=2, \quad b=-3, \quad c=-1$

Qn.

Value Points		Marks allotted
$\begin{aligned} x= & \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\ x & =\frac{-(-3) \pm \sqrt{(-3)^{2}-4 \times 2 \times-1}}{2 \times 2} \\ x & =\frac{3 \pm \sqrt{9+8}}{4} \\ x & =\frac{3 \pm \sqrt{17}}{4} \\ x & =\frac{3+\sqrt{17}}{4} \text { or } \quad x=\frac{3-\sqrt{17}}{4} \end{aligned}$ Prove that : $\frac{\cos \theta-\sin \theta \cdot \cos \theta}{\cos \theta+\sin \theta \cdot \cos \theta}=\frac{\operatorname{cosec} \theta-1}{\operatorname{cosec} \theta+1}$.	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	2

Prove that : $\frac{\sin 30^{\circ}+\cos 60^{\circ}}{\operatorname{cosec} 30^{\circ}-\cot 45^{\circ}}=\sin 90^{\circ}$.

Ans. :

$$
\begin{aligned}
& \mathrm{LHS}= \frac{\cos \theta-\sin \theta \cdot \cos \theta}{\cos \theta+\sin \theta \cdot \cos \theta} \\
&= \frac{\cos \theta(1-\sin \theta)}{\cos \theta(1+\sin \theta)} \\
&=\frac{1-\sin \theta}{1+\sin \theta} \\
&=\frac{1-\frac{1}{\operatorname{cosec} \theta}}{1+\frac{1}{\operatorname{cosec} \theta}} \\
&= \frac{\operatorname{cosec} \theta-1}{\operatorname{cosec} \theta} \\
& \frac{\operatorname{cosec} \theta+1}{\operatorname{cosec} \theta} \\
&=\frac{\operatorname{cosec} \theta-1}{\operatorname{cosec} \theta+1}=\text { RHS }
\end{aligned}
$$

Qn. Nos.	Value Points	Marks allotted
22.	$\begin{align*} \mathrm{LHS} & =\frac{\sin 30^{\circ}+\cos 60^{\circ}}{\operatorname{cosec} 30^{\circ}-\cot 45^{\circ}} \\ & =\frac{\frac{1}{2}+\frac{1}{2}}{2-1} \\ & =\frac{\frac{1+1}{2}}{1} \\ & =\frac{2}{2}=1 \ldots \ldots \ldots \ldots(1) \tag{1}\\ & \text { RHS }=\sin 90^{\circ}=1 \ldots \ldots \end{align*}$ From (1) \& (2) \therefore LHS = RHS Find the coordinates of the point P and Q in the given graph and hence find the length of $P Q$ using distance formula. OR Find the coordinates of the point which divides the line segment joining the points $(4,-3)$ and $(8,5)$ in the ratio 3 : 1 internally. Ans. : $\begin{array}{r} P(1,1) \text { and } Q(5,4) \\ P Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\ P Q=\sqrt{(5-1)^{2}+(4-1)^{2}} \\ P Q=\sqrt{4^{2}+3^{2}} \end{array}$	2

$\begin{aligned} & \text { Qn. } \\ & \text { Nos. } \end{aligned}$	Value Points
	$P Q=\sqrt{16+9}$
	$P Q=\sqrt{25}$
	$P Q=5$ units
	OR $p(x, y)=\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)$
	$\begin{array}{ll} A(4,-3), & B(8,5), m_{1}: m_{2}=3: 1 \\ \left(x_{1}, y_{1}\right) & \left(x_{2}, y_{2}\right) \end{array}$
	$x=\frac{3(8)+1(4)}{3+1}, \quad y=\frac{3(5)+1(-3)}{3+1}$
	$\begin{gathered} x=\frac{24+4}{4}, \quad y=\frac{15-3}{4} \\ x=\frac{28}{4}, \quad y=\frac{12}{4} \end{gathered}$
	$x=7, \quad y=3$

The co-ordinates of the required point $P(x, y)$ is $(7,3)$
$1 / 2$
A basket contains 36 mangoes. $\frac{1}{4}$ th of them are rotten and others are good. If one mango is drawn at random from the basket, then find the probability of getting a good mango.

Ans. :
$n(S)=36$
$n(A)=$ Good Mangoes $=\frac{3}{4} \times 36=27$
$\therefore \quad p(A)=\frac{n(A)}{n(S)}$
$p(A)=\frac{27}{36}$
$p(A)=\frac{3}{4}$
Note : Any alternate method is used to get the correct answer marks should be given

Qn. Nos.	Value Points	Marks allotted
24.	Draw a circle of radius 3.5 cm and construct a pair of tangents to the circle such that the angle between the tangents is 60°. Ans. : $\mathrm{r}=3.5 \mathrm{~cm}$ Construction of circle of radius 3.5 cm Construction of two arcs Construction of two tangents Answer the following questions: $9 \times 3=27$ Divide $p(x)=x^{3}+3 x^{2}+4 x+5$ by $g(x)=x^{2}-x+1$ and find the quotient $[q(x)]$ and remainder $[r(x)]$. OR When the polynomial $p(x)=x^{3}+4 x^{2}+5 x-2$ is divided by the polynomial $g(x)$, the quotient $[q(x)]$ and remainder $[r(x)]$ are $x^{2}-x+2$ and 4 respectively. Find $g(x)$. Ans. : $\begin{aligned} & p(x)=x^{3}+3 x^{2}+4 x+5 \\ & g(x)=x^{2}-x+1 \\ & q(x)=? \\ & r(x)=? \end{aligned}$	2

Qn.
Nos.

Qn.
Nos. Value Points五 Marks allotted
26.

	Value Points	
Find the mean for the following data :		
	Class-interval	Frequency
	2-6	2
	7-11	4
	12-16	5
	17-21	3
	22-26	1

Find the mode for the following data :

Class-interval	Frequency
$1-5$	1
$5-9$	3
$9-13$	7
$13-17$	10
$17-21$	9

Ans. :

Class interval	frequency $\left(f_{i}\right)$	Mid point x_{i}	$x_{i} f_{i}$
$2-6$	2	4	08
$7-11$	4	9	36
$12-16$	5	14	70
$17-21$	3	19	57
$22-26$	1	24	24
	$\sum f_{i}=15$		$\sum f_{i} x_{i}=195$

$$
\begin{aligned}
\text { Mean }=\bar{X} & =\frac{\sum f_{i} x_{i}}{\sum f_{i}} \\
& =\frac{195}{15}
\end{aligned}
$$

$$
\operatorname{Mean}(\bar{X})=13
$$

Qn.
Nos.

Value Points		
	$=13+\left[\frac{10-7}{2 \times 10-7-9}\right] \times 4$	$1 / 2$
$=13+\left[\frac{3}{20-16}\right] \times 4$	$1 / 2$	
$=13+\left[\frac{3}{4} \times 4\right]$		
$=13+3$	$1 / 2$	
$=16$	$1 / 2$	

' D ' is a point on the side $B C$ of a $\triangle A B C$ such that $\left\lfloor A D C=\left\lfloor B A C\right.\right.$. Then prove that $A C^{2}=B C . C D$.

OR

In the figure, $\triangle A B C$ and $\triangle A M P$ are right angled triangles, right angled at B and M respectively. Then prove that $\frac{C A}{P A}=\frac{B C}{M P}$.

Ans. :

In $\triangle A B C$ and $\triangle A D C$

	$\angle B A C=\angle A D C$	[Given]	$1 / 2$
	$\angle A C B=\angle A C D$	[common angle]	
\therefore	$\angle A B C=\angle D A C$		$1 / 2$
\therefore	$\triangle A B C \sim \triangle D A C$	$[A A A$ criterion]	$1 / 2$
\therefore	$\frac{A C}{C D}=\frac{B C}{A C}$		$1 / 2$
\therefore	$A C^{2}=B C \cdot C D$		$1 / 2$

OR

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$

Qn. Nos.	Value Points	Marks allotted
	In $\triangle A B C$ and $\triangle A M P$ $1 / 2$ $\angle A B C=\angle A M P=90^{\circ}$ [Given] $\angle B A C=\angle M A P$ [common angle] \therefore $\angle A C B=\angle A P M$ \therefore $\triangle A B C \sim \triangle A M P$ [AAA similarity criteria] \therefore $1 / 2$ \therefore $\frac{C A}{P A}=\frac{B C}{M P}$	3
28.	Prove that "The lengths of tangents drawn from an external point to a circle are equal". Ans. : Given : $P Q$ and $P R$ are tangents drawn from an external point P to a circle of centre O. To prove that: $P Q=P R$ Construction: Join $O P, O Q$ and $O R$ Proof: In the figure	3

Qn.
Nos.
29.
Value Points
In the figure area of sector $A O B P A$ of radiu
$231 \mathrm{~cm}^{2}$ and the length of the arc $A P B$ is
radius of the sector and angle θ.

In the figure a rectangle $R O Q P$ is inscribed in the quadrant of a circle. If the length and breadth of rectangle are 16 cm and 12 cm respectively. Find the area of the shaded region.

Ans. :
Length of an arc of a sector of angle θ

$$
\begin{align*}
& =\frac{\theta}{360^{\circ}} \times 2 \pi r \\
\therefore \quad \frac{\theta}{360^{\circ}} & \times \not 2 \pi r=\frac{11}{222} \\
& \frac{\theta}{360^{\circ}} \times \pi r=11 \ldots \tag{1}
\end{align*}
$$

Area of the sector of angle θ

$$
\begin{aligned}
& =\frac{\theta}{360^{\circ}} \times 2 \pi r^{2} \\
\therefore \quad & \frac{\theta}{360^{\circ}} \times \pi r \times r=231 \\
\therefore \quad 11 r & =231
\end{aligned}
$$

Qn.
Value Points
Since the age of a person cannot be negative, ignore th
value of $y=-\frac{5}{2}$.
. Present age of son $=y=4$ years
\therefore Present age of son $=y=4$ years

$$
\begin{aligned}
\text { Present age of mother } & =x=2 y^{2} \\
& =2 \times 4^{2} \\
& =32 \text { years }
\end{aligned}
$$

In the figure, $A B C$ is a triangle whose vertices are
$A(x, 10), B(2,2)$ and $C(12,2)$. If $Q(9,6)$ is the mid-point of $A C$ and area of $\triangle A P Q$ is $12 \mathrm{~cm}^{2}$, then find the area of quadrilateral $P B C Q$.

Ans. :

$$
\begin{array}{ccc}
A(x, 10), & \mathrm{B}(2,2), & \mathrm{C}(12,2) \\
\left(x_{1}, y_{1}\right) & \left(x_{2}, y_{2}\right) & \left(x_{3}, y_{3}\right)
\end{array}
$$

Q is the mid-point of $A C, \frac{x_{1}+x_{2}}{2}=9$

$$
\therefore \quad \frac{x+12}{2}=9
$$

$$
x+12=9 \times 2
$$

$$
x+12=18
$$

$$
x=18-12
$$

$$
x=6
$$

Area of triangle $\mathrm{ABC}=$

$$
\begin{aligned}
& \frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right] \\
& =\frac{1}{2}[6(2-2)+2(2-10)+12(10-2)] \\
& =\frac{1}{2}[6(0)+2(-8)+12(8)] \\
& =\frac{1}{2}[0-16+96]
\end{aligned}
$$

32. The ages of 100 patients admitted in an hospital are as follows. Draw a "less than type ogive" for the given data:

Age (in years)	Number of patients (cumulative frequency)
Less than 10	6
Less than 20	15
Less than 30	38
Less than 40	46
Less than 50	65
Less than 60	84
Less than 70	100

Ans. :

Drawing axes and writing scale
Marking points 1
Drawing ogive

Qn.
Nos.

Qn. Nos	Value Points	Marks allotted
	Required A.P. is $a, a+d, a+2 d$ \qquad $3,3+4,3+8$ \qquad $3,7,11,15$ $a=3, d=4, n=20, a_{20}=?$ $a_{n}=a+(n-1) d$ $a_{20}=3+(20-1) 4$ $=3+19 \times 4$ $=3+76=79$ OR The sum of interior angles of a polygon of n sides $=(n-2) 180^{\circ}$ The sum of interior angles of a pentagon $=(5-2) 180^{\circ}$ $=3 \times 180^{\circ}=540^{\circ}$ $\begin{aligned} & a=72, n=5, S_{n}=540, d=? \\ & S_{n}=\frac{n}{2}[2 a+(n-1) d] \\ & 540=\frac{5}{2}[2 \times 72+(5-1) d] \\ & 540=\frac{5}{2}[144+4 d] \end{aligned}$	4

Qn. Nos.	Value Points	Marks allotted
	$\begin{gathered} \begin{array}{c} 108 \\ 54 \theta \end{array}=\frac{\frac{1}{2}}{2} \times \not 2[72+2 d] \\ 108=72+2 d \\ 2 d=108-72 \\ 2 d=36 \\ d=\frac{36}{2}=18 \\ d=18 \end{gathered}$ The interior angles of the pentagon are $a, \quad a+d, \quad a+2 d, \quad a+3 d, \quad a+4 d$ $72, \quad 72+18, \quad 72+2 \times 18, \quad 72+3 \times 18, \quad 72+4 \times 18 \quad 1 / 2$ $72^{\circ}, \quad 90^{\circ}, \quad 108^{\circ}$,	4

36. In the figure the poles $A B$ and $C D$ of different heights are standing vertically on a level ground. From a point P on the line joining the foots of the poles on the level ground, the angles of elevation to the tops of the poles are found to be complementary. The height of $C D$ and the distance $P D$ are $20 \sqrt{3} \mathrm{~m}$ and 20 m respectively. If $B P$ is 10 m , then find the length of the pole $A B$ and the distance $A C$ between the tops of the poles.

Ans. :
Let angle $C P D$ be θ
Then $\tan \theta=\frac{C D}{P D}=\frac{20 \sqrt{3}}{20}=\sqrt{3}$
$\therefore \theta=60^{\circ}$
$\therefore \angle A P B=90^{\circ}-\theta=90^{\circ}-60^{\circ}=30^{\circ}$
In right $\triangle A B P$
$\tan 30^{\circ}=\frac{A B}{B P}$

Ans. :
Outer surface area of the device $=$
CSA of cylinder + CSA of frustum of cone + CSA of hemisphere.

$$
r=14 \mathrm{~cm}, h=15 \mathrm{~cm}
$$

CSA of cylinder $=2 \pi r h=2 \times \frac{22}{7} \times 14^{2} \times 15$

$$
=88 \times 15
$$

$$
=1320 \mathrm{~cm}^{2}
$$

Height of frustum $=60-(15+21)=24 \mathrm{~cm}$
$r_{1}=21, r_{2}=14, h=24, l=$?
$\therefore l=\sqrt{h^{2}+\left(r_{1}-r_{2}\right)^{2}}=\sqrt{24^{2}+(21-14)^{2}}$

$$
l=\sqrt{576+49}=\sqrt{625}
$$

$$
l=25 \mathrm{~cm}
$$

CSA of frustum $=\pi\left(r_{1}+r_{2}\right) l$

$$
\begin{aligned}
& =\frac{22}{7} \times(21+14) \times 25 \\
& =\frac{22}{7} \times 35 \times 25 \\
& =2750 \mathrm{~cm}^{2}
\end{aligned}
$$

$\begin{aligned} & \text { Qn. } \\ & \text { Nos. } \end{aligned}$	Value Points	Marks allotted
	$\begin{aligned} \text { CSA of hemisphere } & =2 \pi r^{2} \\ & =2 \times \frac{22}{7} \times 21 \times 21 \\ & =44 \times 63 \\ & =2772 \mathrm{~cm}^{2} \end{aligned}$ \therefore Outer surface area of the device $\begin{aligned} & =\text { CSA of }(\text { Cylinder }+ \text { frustum }+ \text { hemisphere }) \\ & \\ & =1320+2750+2772 \\ & =6842 \mathrm{~cm}^{2} \end{aligned}$ Quantity of the liquid in hemisphere $\begin{aligned} & =\text { Volume of hemisphere } \\ & =\frac{2}{3} \pi r^{3} \\ & =\frac{2}{\not 2} \times \frac{22}{7} \times 21 \times 21 \times \frac{3}{2} 1 \\ & =44 \times 441 \\ & =19404 \mathrm{~cm}^{3} \end{aligned}$	5

